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Carbon dioxide has been reduced by the dropping mercury electrode' and by amalgams.2 In 

addition, it has occasionally been bubbled during reduction processes through catholytes con- 

taining aryl olefins' and acetylene," polynuclear hydrocarbons,' butadiene,3a,5 aromatic ketones,e 

a,B-unsaturated aryl and aryl-substituted alkyl ketones,7 and benzalaniline' to form carboxylic 

acids. Tsutsumi and Murakawa have reported the electrocarboxylation of acrylonitrile in low yield.8 

Recently, K. S. Udupa et a1.l' -- have claimed a practical synthesis of formic acid by electroreduc- 

tion of co-z.. No comment was usually made in these studies concerning the question of whether 

electron-transfer occurred to CO2 or to the other substrate or to both depolarizers. CO-3 is re- 

duced in DMF or DMSOl' at= -2.1 to -2.2 vs SCE. 

We are reporting representative results of practical interest for synthesis, of a study of 

the electroreduction of solutions containing CO2 and the following additional substrates: (a) 

none, (b) activated olefins, (c) nonactivated olefins, (d) aralkyl halides, (e) alkyl halides, 

Details concerning individual segments of this project will appear elsewhere. 

CO, alone .-In contrast to previous uorkl" which reports the reduction of CO2 (2;/2 moles) 

in dipolar aprotic media to COse2 and CO, we have found that the m reduction product in 

similar media is oxalate (Table 1). 

Table 1. Electrolysis of CO2 in DMP at Mercury a 

Current density b e 
c 

Moles oxalatefcarbonate d,e 

1 -2.0 15.0 
6 -2.1 3.2 
18 -2.15 t0 -2.2 92.0 

a Solution initially had 0.2 M Et,NBr. b 

d 
In ma/cti; controlled parameter. ' Invvs SCE; & 

measured but not controlled. Analysis by glc of the butyl esters obtained by treating the 

catholyte with butyl bromide (cf., ref. 13). 

e Typical current efficiency to both products 89. 
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Activated olefine .-The electrocarboxylations of 

few exceptions been restricted to the reaction of COn 
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activated olefins cited above have with 

with relatively long-lived species formed 

by reducing the electroactive olefin. We have examined the carboxylation of extremely short- 

lived electrode intermediates'" (Table 2). Preliminary experiments with methyl acrylate as the 

substrate have shown that the intermediate anion radical may be made to react with C02/water/ 

unreduced olefin in competition. This results in varying amounts of mono- and dicarboxylated 

substrate as well as dimerised substrate in which the monomer has undergone monocarboxylation. 

When diactivated olefins (e.g., dimethyl maleate) show two separate waves in the p_resence of 

Con, product selectivity is determined by the potential at which the bulk electrolysis is run. 

Table 2. Electroreduction' of Activated O.lefins + CO9 
b 

Current 
Olefin -E% c 

d 
n Products e Efficiency ($2 

C&=cHCocH~ 1.91 2 MsOCo(cH&cOCHa 22 

C&=CHCN 2.14 2 MeOCOC&CH(CN)COOMe 41 

CH+HCOOMe 2.10 2 MeCCCCH2CH(COOMe)2 52 

COOMe 

Meococx=cHcooMe(cis-) 1.53 1 (M~~c~),CHC!HCHCH(C~~M~)~ 46 

I! OOMe 

MeOCOCH=CHCOOMs(cis-) 1.84 2 (MeOCO)nCHCH(COOMe)n 31 

a CHnCNfO.2 M EtdNOTs (e-), Hg cathode. b Olefin added slowly in course of run to catholyte 

through which CO;. was bubbling. ' Polarographically at ca 10S3 L M olefin and 10-n M dissolved 

c0.q. Cf. ref. 11. 

treating catholyte 

nmr, mass spectral 

Macro-runs on waves indicated. 
d 
Coulometric. e Determined by glc after 

with Me1 according to footnote d in Table 1. Product identity established by 

and elemental analyses. 

Nonactivated olefins .-As mentioned, CO2 is electroreduced at ca. -2.2 v. The participa- - 

tion of CO,: must therefore be considered in the reported formation of carboxylic acids from 

certain hydrocarbons which are more difficult to reduce than CO,: butadiene (-2.6), styrene 

(-2.45), naphthalene (-2.5J), phenanthrene (-2.47).14 

Con' must unequivocally be involved when electroinactive olefins are used. We have found 

that electrolysis of CO2 at Hg in the presence of either j,&-dihydropyran or norbornadiene 

results in incorporation of CO,: the latter olefin in Et4NCl-2$ HnO-MeCN is converted to 
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3-nortricyclenecarboxylic acid. In this connection, Norman et al l5 have shown that CO,: and -- 

.COnH, generated by H abstraction from HCOO- and HCOOH respectively undergp typical radical 

addltion reactions. 

Aralkyl halides .-We have already reported 'a that reduction of bensyl halide in the pres- 

ence of CO2 leads directly to bensyl phenylacetate. Bis-halomethyl aromatics under similar 

conditions yield polyesters as, e.g., from_m- and P-xylylene dibromide/dichloride, 4,4'-bis- 

chloromethylbiphenyl. Nmr analyses indicate that probably no polyhydrocarbon is formed. 

Alkyl halides .-Reduction of RX+COn at5 yields RCOOR, R&On, R&lg and oxalate (Table 3). 

Depending on the cathode voltage needed, R- and/or CO,: may be involved. At graphite, other 

types of products are formed possibly arising by attack of R- upon the electrolyte and solvent. 

Table 3. Reduction of RXtCOB in DMF/EtJqX 

Substrate reduced 
Rx Cathode Products ($) Rx co9 

n-CnHllBr Hg C5HllCOOwh1(8) + + 

(%H11)2C03(3.0) 

(C5%1)2Hg(X)) 

n-CdHnBr 

n-CnH11Cl 

n-CaHoBr Graphite 

(c4%)2% 

no esters 

C~H~~COOCnH~~(small) 

(CsH~).&Os(s~ll) 

oxalate (major) 

‘WhlC~5Hll 

CHsCH(CC’@GHs).d34) 

C4w3=-2(8) 

CHa PIN& 

& 

(trace) 

~4% 

n-Cdb 

+ 

+ 

+ 
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