SOME CATHODIC ORGANIC SYNTHESES INVOLVING CARBON DIOXIDE D. A. Tyssee, J. H. Wagenknecht, M. M. Baizer, and J. L. Chruma

> Corporate Research Department, Monsanto Company St. Louis, Missouri 63166, U.S.A.

(Received in USA 29 September 1972; received in UK for publication 23 October 1972)

Carbon dioxide has been reduced by the dropping mercury electrode¹ and by amalgams.² In addition, it has occasionally been bubbled during reduction processes through catholytes containing aryl olefins³ and acetylene,⁴ polynuclear hydrocarbons,⁴ butadiene,^{3a,5} aromatic ketones,⁸ α,β -unsaturated aryl and aryl-substituted alkyl ketones,⁷ and benzalaniline⁸ to form carboxylic acids. Tsutsumi and Murakawa have reported the electrocarboxylation of acrylonitrile in low yield.⁹ Recently, K. S. Udupa <u>et al</u>.¹⁰ have claimed a practical synthesis of formic acid by electroreduction of CO₂. No comment was usually made in these studies concerning the question of whether electron-transfer occurred to CO₂ or to the other substrate or to both depolarizers. CO₂ is reduced in DMF or DMSO¹¹ at <u>ca</u>. -2.1 to -2.2 v vs. SCE.

We are reporting representative results of practical interest for synthesis, of a study of the electroreduction of solutions containing CO_2 and the following additional substrates: (a) none, (b) activated olefins, (c) nonactivated olefins, (d) aralkyl halides, (e) alkyl halides. Details concerning individual segments of this project will appear elsewhere.

<u>CO₂ alone.</u>—In contrast to previous work¹² which reports the reduction of CO₂ ($2\overline{e}/2$ moles) in dipolar aprotic media to CO₃⁻² and CO, we have found that the <u>major</u> reduction product in similar media is oxalate (Table 1).

<u>Table 1.</u>	Electrolysis of CO ₂ in DMF	at Mercury ^a
Current density b	<u> </u>	Moles oxalate/carbonate d,e
1	-2.0	15.0
6	-2.1	3.2
18	-2.15 to -2.2	92.0

^a Solution initially had 0.2 M Et₄NBr. ^b In ma/cm²; controlled parameter. ^c In v <u>vs.</u> SCE; measured but not controlled. ^d Analysis by glc of the butyl esters obtained by treating the catholyte with butyl bromide (cf., ref. 13).

e Typical current efficiency to both products 83%.

Activated olefins.—The electrocarboxylations of activated olefins cited above have with few exceptions been restricted to the reaction of CO_2 with relatively long-lived species formed by reducing the electroactive olefin. We have examined the carboxylation of extremely shortlived electrode intermediates¹² (Table 2). Preliminary experiments with methyl acrylate as the substrate have shown that the intermediate anion radical may be made to react with CO_2 /water/ unreduced olefin in competition. This results in varying amounts of mono- and dicarboxylated substrate as well as dimerized substrate in which the monomer has undergone monocarboxylation. When diactivated olefins (e.g., dimethyl maleate) show two separate waves in the presence of CO_2 , product selectivity is determined by the potential at which the bulk electrolysis is run.

Table 2. Electroreduction ^a of Activated Olefins + CO_2 ^b							
Olefin	<u>E¹2</u>	n d	Products	Current Efficiency (%)			
CH2=CHCOCH3	1.91	2	MeOCO(CH ₂) ₂ COCH ₃	22			
CH2=CHCN	2.14	2	MeOCOCH ₂ CH(CN)COOMe	41			
CH2==CHCOOMe	2.10	2	MeOCOCH ₂ CH(COOMe) ₂	52			
			COOMe				
MeOCOCH==CHCOOMe(cis-)	1.53	1	(MeOCO)2CHCHCHCH(COOMe)2	46			
			сооме				
MeOCOCH=CHCOOMe(cis-)	1.84	2	(MeOCO) ₂ CHCH(COOMe) ₂	31			

^a CH₃CN/0.2 M Et₄NOTs (p-), Hg cathode. ^b Olefin added slowly in course of run to catholyte through which CO₂ was bubbling. ^c Polarographically at <u>ca.</u> 10^{-3} M olefin and 10^{-3} M dissolved CO₂. Cf. ref. ll. Macro-runs on waves indicated. ^d Coulometric. ^e Determined by glc after treating catholyte with MeI according to footnote d in Table 1. Product identity established by nmr, mass spectral and elemental analyses.

<u>Nonactivated olefins.</u>—As mentioned, CO_2 is electroreduced at <u>ca.</u> -2.2 v. The participation of CO_2 ⁻ must therefore be considered in the reported formation of carboxylic acids from certain hydrocarbons which are more difficult to reduce than CO_2 : butadiene (-2.6), styrene (-2.45), naphthalene (-2.53), phenanthrene (-2.47).¹⁴

 CO_{2} must unequivocally be involved when electroinactive olefins are used. We have found that electrolysis of CO_{2} at Hg in the presence of either 3,4-dihydropyran or norbornadiene results in incorporation of CO_{2} : the latter olefin in Et₄NC1-2% H₂O-MeCN is converted to 3-nortricyclenecarboxylic acid. In this connection, Norman <u>et al.</u>¹⁵ have shown that CO_2 - and $\cdot CO_2H$, generated by H abstraction from HCOO⁻ and HCOOH respectively undergo typical radical addition reactions.

<u>Aralkyl halides.</u> We have already reported ¹⁰ that reduction of benzyl halide in the presence of CO_2 leads directly to benzyl phenylacetate. Bis-halomethyl aromatics under similar conditions yield polyesters as, e.g., from <u>m</u>- and <u>p</u>-xylylene dibromide/dichloride, 4,4'-bischloromethylbiphenyl. Nmr analyses indicate that probably no polyhydrocarbon is formed.

<u>Alkyl halides.</u> Reduction of RX+CO₂ at <u>Hg</u> yields RCOOR, R₂CO₃, R₂Hg and oxalate (Table 3). Depending on the cathode voltage needed, R^{-} and/or CO₂[±] may be involved. At <u>graphite</u>, other types of products are formed possibly arising by attack of R^{-} upon the electrolyte and solvent.

<u>RX</u>	Cathode	Products (%)	Substrate RX	reduced CO2
n-C ₅ H11Br	Hg	$C_5H_{11}COOC_5H_{11}(8)$ $(C_5H_{11})_2CO_3(10)$ $(C_5H_{11})_2Hg(20)$	+	+
n-C ₄ H ₉ Br	Hg	(C ₄ H ₉) ₂ Hg no esters	+	-
n-C ₅ H ₁₁ C1	Hg	C ₅ H ₁₁ COOC ₅ H ₁₁ (small) (C ₅ H ₁₁) ₂ CO ₃ (small) oxalate (major)	-	+
n-C ₄ H ₉ Br	Graphite	$C_{5}H_{11}COOC_{5}H_{11}$ $CH_{3}CH(COOC_{4}H_{9})_{2}(34)$ $C_{4}H_{9}OCOCONMe_{2}(8)$ $CH_{3}CHNEt_{2} (trace)$ $cOOC_{4}H_{9}$ $n-C_{8}H_{18}$	+	-

Table 3. Reduction of RX+CO2 in DMF/Et4NX

REFERENCES

- 1. H. Dehn, V. Gutmann, H. Kirch, and G. Schober, Monatsh. Chem., 93, 1348 (1962).
- R. M. Miller, H. V. Knorr, H. J. Eichel, C. M. Meyer, and H. A. Tanner, <u>J. Org. Chem.</u>, <u>27</u>, 2646 (1962).
- 3. (a) U. S. Pat. 3,344,045 to Sun Oil Co.; (b) S. Wawzonek, E. W. Blaha, R. Berkey, and
 M. E. Runner, <u>J. Electrochem. Soc.</u>, <u>102</u>, 235 (1955); (c) R. Dietz and M. E. Peover,
 <u>Disc. Farad. Soc.</u>, <u>45</u>, 154 (1968).
- 4. S. Wawzonek and D. Wearing, <u>J. Amer. Chem. Soc.</u>, <u>81</u>, 2067 (1959).
- 5. U.S. Pat. 3,032,489 to Sun Oil Co.
- 6. S. Wawzonek and A. Gundersen, J. Electrochem. Soc., 107, 537 (1960).
- 7. S. Wawzonek and A. Gundersen, ibid., 111, 324 (1964).
- 8. N. L. Weinberg, A. K. Hoffmann, and T. B. Reddy, <u>Tetrahedron Lett.</u>, 1971, 2271.
- S. Tsutsumi and T. Murakawa, <u>Amer. Chem. Soc.</u>, <u>Div. Petrol. Chem.</u>, Prepr. <u>1970</u>, 15(4), B5-B6.
- 10. K. S. Udupa et al., Electrochim. Acta, 16, 1593 (1971).
- 11. L. V. Haynes and D. T. Sawyer, Anal. Chem., 39, 332 (1967).
- (a) J. P. Petrovich and M. M. Baizer, <u>J. Electrochem. Soc.</u>, <u>118</u>, 447 (1971); (b) W. V. Childs, J. T. Maloy, C. P. Keszthelyi, and A. J. Bard, <u>ibid.</u>, <u>118</u>, 874 (1971).
- 13. J. H. Wagenknecht, M. M. Baizer, and J. L. Chruma, Synthetic Commun., 2, 215 (1972).
- C. K. Mann and K. K. Barnes, <u>Electrochemical Reactions in Nonaqueous Systems</u>, Marcel Dekker, New York, 1970.
- 15. A. L. J. Beckwith and R. O. C. Norman, J. Chem. Soc. (B), 400 (1969).
- 16. M. M. Baizer and J. L. Chruma, <u>J. Org. Chem.</u>, <u>37</u>, 1951 (1972).